Thiocyanate binding to the molybdenum centre of the periplasmic nitrate reductase from Paracoccus pantotrophus.
نویسندگان
چکیده
The periplasmic nitrate reductase (NAP) from Paracoccus pantotrophus is a soluble two-subunit enzyme (NapAB) that binds two haem groups, a [4Fe-4S] cluster and a bis(molybdopterin guanine dinucleotide) (MGD) cofactor that catalyses the reduction of nitrate to nitrite. In the present study the effect of KSCN (potassium thiocyanate) as an inhibitor and Mo ligand has been investigated. Results are presented that show NAP is sensitive to SCN(-) (thiocyanate) inhibition, with SCN(-) acting as a competitive inhibitor of nitrate (K(i) approximately 4.0 mM). The formation of a novel EPR Mo(V) species with an elevated g(av) value (g(av) approximately 1.994) compared to the Mo(V) High-g (resting) species was observed upon redox cycling in the presence of SCN(-). Mo K-edge EXAFS analysis of the dithionite-reduced NAP was best fitted as a mono-oxo Mo(IV) species with three Mo-S ligands at 2.35 A (1 A=0.1 nm) and a Mo-O ligand at 2.14 A. The addition of SCN(-) to the reduced Mo(IV) NAP generated a sample that was best fitted as a mono-oxo (1.70 A) Mo(IV) species with four Mo-S ligands at 2.34 A. Taken together, the competitive nature of SCN(-) inhibition of periplasmic nitrate reductase activity, the elevated Mo(V) EPR g(av) value following redox cycling in the presence of SCN(-) and the increase in sulphur co-ordination of Mo(IV) upon SCN(-) binding, provide strong evidence for the direct binding of SCN(-) via a sulphur atom to Mo.
منابع مشابه
Structural investigation of the molybdenum site of the periplasmic nitrate reductase from Thiosphaera pantotropha by X-ray absorption spectroscopy.
The molybdenum centre of the periplasmic respiratory nitrate reductase from the denitrifying bacterium Thiosphaera pantotropha has been probed using molybdenum K-edge X-ray absorption spectroscopy. The optimum fit of the Mo(VI) EXAFS suggests two ==O, three -S- and either a fourth -S- or an -O-/-N- as molybdenum ligands in the ferricyanide-oxidized enzyme. Three of the -S- ligands are proposed ...
متن کاملNitrate reductase from the magnetotactic bacterium Magnetospirillum magnetotacticum MS-1: purification and sequence analyses.
We purified the nitrate reductase from the soluble fraction of Magnetospirillum magnetotacticum MS-1. The enzyme was composed of 86- and 17-kDa subunits and contained molybdenum, non-heme iron, and heme c. These properties are very similar to those of the periplasmic nitrate reductase found in Paracoccus pantotrophus. The M. magnetotacticum nap locus was clustered in seven open reading frames, ...
متن کاملIdentification of periplasmic nitrate reductase Mo(V) EPR signals in intact cells of Paracoccus denitrificans.
EPR spectroscopy has been successfully used to detect signals due to molybdenum (V) and ferric iron in intact cells of aerobically grown Paracoccus denitrificans. The signals are ascribed to the catalytic molybdenum centre and to the haem iron of the periplasmic nitrate reductase. These signals are absent from a mutant strain deficient in this enzyme. The Mo(V) signal is due to the High-g Split...
متن کاملMo(V) co-ordination in the periplasmic nitrate reductase from Paracoccus pantotrophus probed by electron nuclear double resonance (ENDOR) spectroscopy.
The first electron nuclear double resonance (ENDOR) study of a member of the Mo-bis-molybdopterin guanine dinucleotide family of molybdoenzymes is presented, using the periplasmic nitrate reductase from Paracoccus pantotrophus. Rapid freeze-quenched time-resolved EPR revealed that during turnover the intensity of a Mo(V) EPR signal known as High-g [resting] increases. This signal is split by tw...
متن کاملThe napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha.
The napEDABC locus coding for the periplasmic nitrate reductase of Thiosphaera pantotropha has been cloned and sequenced. The large and small subunits of the enzyme are coded by napA and napB. The sequence of NapA indicates that this protein binds the GMP-conjugated form of the molybdopterin cofactor. Cysteine-181 is proposed to ligate the molybdenum atom. It is inferred that the active site of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 352 Pt 3 شماره
صفحات -
تاریخ انتشار 2000